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SUMMARY

We study a model with three random effects factors, where the first crosses the
second which nests the third, and apply the results to an example in grapevine
castes carried out to see if there is genetical homogeneity break-down due to
isolation.
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1. Introduction

This experiment was set up to see if, in grapevines castes, there is genetical
homogeneity break-down due to isolation. This break-down is interesting since
grapevines are reproduced vegetatively. Clones will consist of grapevines with a
known ancestor and are grouped into castes with an assumed common ancestor. Now
a well known Portuguese caste, Touriga Nacional, is grown mainly in two distinct
regions. This enabled the use of such a caste in the experiment. Three clones from
each of the two regions were randomly selected. The six clones were planted in a
homogeneous field, using a grid pattern with one cultivar per column. Three groups
of five adjacent rows were randomly selected. The factors to be considered in the
experiment were, besides origin, clone and location. The levels of this last factor were
the groups of rows. Now the location factor crosses with the origin factor, which nests
the clones factor.
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Previous analysis of this experiment were carried by Fornseca et al. (2003) and
Ferreira et al. (2004). In the first of these papers all three factors were treated as
having random effects. UMVUE estimators for the variance components were
obtained and the hypothesis of their nullity was tested. While it is clearly acceptable
that the location and clone factors have random effects, for the origin factor such an
assumption is less forthcoming. Thus it is of interest to point out that (see Ferreira et
al (2004)) with the origin factor taken as having fixed effects the corresponding test
has the same p-value as when, as previously, it is assumed to have random effects.

We now assume the origin factor to have fixed effects and obtain confidence
intervals for the variance components, through Monte-Carlo methods based on the
orthogonal structure of the model. In the next section we present such a structure,
before treating the data.

As is well known (see for instance Khuri et al (1997)) there are no unbiased
estimators for all variance components given by the difference of two ANOVA mean
squares. Actually, as we will show for this experiment, variance components may be
written as the difference between a positive and a negative part. We will show how to
obtain UMVUE for both parts, (6°)" and (%), while deriving confidence intervals
for them and the corresponding variance components. These UMVUE will be useful
in validating the use of Monte Carlo methods. To do this we will show that the point
((6")73(6%)7) lies along the lines that correspond to the median of the empirical
samples for the product, the quotient, sum and difference of both parts.

2. Model

Assigning indexes i, j, k and p to location, origin, clone and replicates, we
have, using the notation of Khuri et al. (1998), the model

Vijpp SH+T+ B, +(1h); +0, +(76) iy * s )

with i=1,..,v (=3), j=l.,b (=2), k=1,..,n (=3) and p=1,..,r (=5).

Writing @y’ for the product by 6 of a central chi-square with n degrees of
freedom, we have SS(r)~7,7., SS(B)~ 1,45, » SS(6)~7,2;,» SS(zB)~ 7.7, and
S8(z8) ~ y,x,, » With
y,=0’ +bnra’ + nrofﬁ +ro’
7,=0*+Vnroi+nro+vro+ro’
7,=02+Vroi+rok , )]
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The S$S(r), SS(B), SS(5), SS(zB) and SS(z8) are sufficient statistics from
which, see Fonseca et al. (2003), UMVUE might be derived for the y, the variance
components and their positive and negative parts. These may be obtained directly
from expression 4, for instance o5 = Lr+7s)

Now if S~ 8y, when S=s, we have the 1-g level confidence interval for ¢
given by

S )

X X
- “ni

Likewise we can obtain a probability for every closed interval covering . Since
the family constituted by closed intervals and the void set is closed for intersection,
there is (see William (1997, pg. 19)) a unique probability measure that takes the same
values, for closed intervals, and is associated to €. The corresponding distribution
functions will also be associated to . We say that this probability measure is induced
by s.
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Thus we can use the values s, , s,, 5., s;, s,; and s, of the sums of squares to
induce probability measures associated to »,, »,, 7,, 7,, ¥ and o*. To obtain
independent samples with these probability measures we take sets (Xiis Xins X35 X4,

1
Xs> %,) of independent central chi-squares with g, g,, g, g, g and
vbn(r -1) degrees of freedom and obtain the : z,, = = %y = L, z,= ;—”;, Z, =%,

s, 3, .
zis=7>and zg ==, i=1..,N.

i
Since the variance components are given by measurable functions of 7,, 7,, 7,
“%.» ¥s and o’ the samples W wy s J=1,2,3,4,5, with

1 :
W =_nbr (z,.’, —zM); i=1,.,N
1 .
W, = (z,.,z —Z3—Z,+ z,.,s]; i=L..,N
var
1 .
1 Wis =;(zi,3 —zi,s); i=L.,N (6)
1
Wia =;l—r‘-(z'4 "Z,-’s), l:1, ,N
1
WIS :7(215 _21,6)’ l=17 ’N
v

will have probability distributions associated with the variance components. Thus we

can use the empirical quantiles of these samples to obtain confidence intervals for the
variance components.

3. Data treatment

In table 1 we present the yield, in Kg, for the grapevines in the experiment.

From this data we obtained

(SS(r) =0.6748

SS(B) =9.6105

< S§(8) =6.2590 ’ ™
SS(z8) =3.4464

S$5(z6)=3.4158

SS, =26.4333
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Table 1. Yields in Kg
. Origin | Origin 2
t!
Location Clone 1 Clone 2 Clone 2 Clone 1 Clone 2 Clone 3
1 3.00 1.00 1.10 1.75 1.10 1.05
1.85 1.10 1.50 3.50 1.05 1.25
0.75 1.00 1.80 2.50 0.50 2.00
1.35 1.60 1.45 2.00 1.05 1.50
1.45 1.50 1.25 0.65 1.25 2.10
2 1.80 1.60 0.85 2.00 1.20 1.00
0.70 1.75 0.65 3.00 1.35 2.70
2.50 0.50 0.55 2.55 1.20 2.15
1.70 1.35 0.90 3.00 0.30 2.10
0.40 1.10 0.90 2.65 2.50 2.70
3 1.05 0.75 0.90 1.60 1.05 1.60
1.50 0.65 0.90 3.05 1.95 1.10
1.15 0.90 0.55 0.25 2.00 2.05
0.85 0.85 0.70 1.66 2.20 1.50
1.15 1.05 0.35 2.65 2.35 3.00
and the UMVUE in (8)
1 -
(0-1') = _71’ (O'r)
~2\* ~ ~ N, ~23 1 ~ ~
(O'ﬂ) =_(72+75)’(Up) =4_5(73+7’4)
1
9 (0'5) 73, (0'5) 5 Vs )
l - 1
(O'tﬂ) = _}/4’ (Ur/i)
1, - 1
(0'15) = —5')/5, (O'rxS) g
We now generate the following
W, =z, Wy =z, i =1,..,10000
il 30 [AERRA(S 30 i4° 0eey
+ 1 -1
W, —(z, 425 )i W2 =——=|z3 2 =1,..,,10000
i,2 45 ( i,2 I,S) \2 45 ( 3 ]
+ 1 -
LW, —z, W, =—2,;i=1..,10000 ®
3 15 i3 3 15 i5
+—1z _—lz ; 1=1,...,10000
i4 15 i4? i4 15 5 3y
+ 1 -1 .
W =gz,.,5 Zgs Wis =§z,.,6; i=1,..,10000
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with g0 <w, . < 750, j=1,..,4, thus obtaining examples with the densities induced

for the variance components.

These densities are presented in graphs 1 to 5 as well as the corresponding
UMVUE , which is represented by a red dot. We see that the densities appear to be
unimodal with the UMVUE near the modes.

These graphs were built from histograms, the breadths of the classes being
0.006599, 0.018545, 0.025544, 0.016655 and 0.018950 for the first, second and

third factors and for the interactions 1x2 and 1x3 respectively.

In table 2 we indicate, for the various sets of factors associated to variance
components, the corresponding UMVUE and central point of the modal class.

Table 2.
Factor UMVUE Center of the modal class pi D.F.
1 -0.0462 -0.0171 0.5407 22
2 0.1500 0.0170 0.5487 1/8/4/2
3 0.0759 0.0336 0.4368 4/8
1x2 0.0864 0.0350 0.4284 2/8
1x3 0.0120 0.0065 0.4511 8/72

06 -05

03 -02 -1 0 0,1

Figure 1. Localization of the UMVUE , relative to the empirical density, for the first factor.

DF.=2/2
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Figure 2. Localization of the UMVUE , relative to the empirical density, for the second factor.
D.F.=1/8/2/4
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Figure 3. Localization of the UMVUE , relative to the empirical density, for the third factor.
DF.=4/8
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Figure 4. Localization of the UMVUE , relative to the empirical density, for the interaction the first
and the second factor. D.F.=2/8
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Figure 5. Localization of the UMVUE , relative to the empirical density, for the interaction the first
and the third factor. D.F.=8/72
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As may be seen in expression 4, the variance components have a positive and a

negative part. For instance, (67)" =-(y, +7;) and (0})” =<t(, +7,). In graphs 6

to 10 we present empirical joint densities induced for both parts of the variance
components.

The coordinates in the xoy plane of the point located above each joint density are
the UMVUE estimators of both parts. It is clearly seen that the joint densities are
unimodal and that the mode and the point estimators are close neighbors for all
variance components.

These empirical densities were obtained from pairs (X;,X;), i=1,.., of
generated values for the positive and negative parts of the variance components. This
enabled us to pursue the study of the location of the UMVUE in relation to the
bidimensional empirical densities. Let u, [v,] be the empirical quantile for

probability g of the quotient -’)%— [product XX, ]. In graphs 12 to 16 the curves
y=u,x and y=-* are presented for the various variance components and for the

values ¢ =0.05, 0.1, 0.3, 0.5, 0.7, 0.9 and 0.95. The coordinates of the red dot are
the UMVUE estimators for the positive and negative parts.

Figure 6. Localization of the UMVUE , relative to the bidimensional density, for the first factor.
D.F.=2/2
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Figure 7. Localization of the UMVUE , relative to the bidimensional density, for the second factor.
D.F.=1/8/2/4

Figure 8. Localization of the UMVUE , relative to the bidimensional density, for the third factor.
D.F.=4/8
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Figure 9. Localization of the UMVUE , relative to the bidimensional density, for interaction
between the first and the second factor, D.F. =2/8

Figure 10. Localization of the UMVUE , relative to the bidimensional density, for interaction
between the first and the third factor. D.F.=8/72
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A legend for the diagrams is given on Figure 11.

Legend:

-— 5 %

#:50 % OS5 %

e 10 % e 70 % * Points

G 30 % w90 % @ UMVUE

Figure 11. Legend

Figure 12. First factor (j=1), D.F.=2/2
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Figure 14. Third factor (j=3), D.F.=4/8
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Figure 16. Interaction of the first and the third factor (j=5), D.F.=8/72

In Table 3 we present, for the positive and negative parts of the variance
components, the UMVUE and the empirical quantiles v,, . and u_, for the product
and quotient.
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Figure 18. Second factor (j=2), D.F.=1/8/2/4
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Figure 20. Interaction of the first and the second factor (j=4), D.F.=2/8
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Figure 21. Interaction of the first and the third factor (j=5), D.F.=8/72

In table 4 we present, for the positive and negative parts of the variance

components, the UMVUE and the empirical quantiles w,, ; and z_, ,, for the sum and

difference. Thus empirical quantiles for the variance components are presented in this
tableas z,, ;.

q,i.j°

Table 4.

Factor gclw_ Quancue| 5% 10% | 30% | 50% | 70% | 90% | 95%
1 ](0.05744;0.01125) W, 10 0.0326 |0.0400{0.0678 | 0.1011 |0.1549)0.3120 { 0.4125
Z,10 -0.3698 |-0.2696|-0.1073| -0.0535 (-0.0247| 0.0026 { 0.0216

2 1(0.07307;0.22306) W01 0.1470 (0.1779|0.2770| 0.3941 | 0.5658 | 0.9022 | 1.0437
Z,0 -0.1792 |-0.0981}0.0181 | 0.1142 | 0.2753 | 0.6147 | 0.7656

3 [(0.02847;0.10432) W, 02 0.0755 |0.087310.1243 | 0.1659 |0.2316 | 0.4257 | 0.5998
Z,02 0.0016 |0.0155|0.0515| 0.0896 |0.15340.34710.5219

1 x2 |(0.02847:0.11488) W, 0.0693 |0.0818 | 0.1287 | 0.1886 |0.2927 [ 0.6216 | 0.8209
Z, -0.0053 [ 0.0109 | 0.0542 | 0.1116 | 0.2204 | 0.5407 | 0.7466

1x3 |(0.07343:0.05640) W12 0.1151 |0.1235]0.1469 | 0.1698 | 0.2016 | 0.2732 | 0.3228
Zy1a -0.0371 |-0.0270(-0.0040| 0.0194 | 0.0515]0.1215]0.1731
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We point out that, in all these figures, the red dot lies near the intersection of the
quantile line for ¢=0.5. This gives us an additional validation of the simulation
technique used.

In Table 5 we can see that the point whose coordinates are the UMVUE is always
covered by the confidence limits, for @ =10%.

Table 5.
Factor UMVUE Z0.05,i,j Z0.95,i,) D.F.
1 -0.0462 -0.3698 0.0216 2/2
2 0.1500 -0.1792 0.7656 1/8/4/2
3 0.0759 0.0016 0.5219 6/8
1x2 0.0864 -0.0053 0.7466 2/8
1x3 0.0120 -0.0371 0.1215 8/72

As a parting remark, we point out that through the validation we have unified two
distinct developments emerging from the use of sufficient complete statistics.
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